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Extreme Mass Ratio Inspirals

■ Solar-mass, compact 
object moving around a 
supermassive black hole

 energy lost due to 
radiation leads to orbital 
decay

 possible source for space 
based GW antenna

■ 105 wave cycles / year
 below noise level
 accurate modeling to detect signal
 encode geometry around central object

■ employ small mass ratio approach
 first order expansion in µ/M
 no weak-field or slow motion assumption
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Scalar self force in Schwarzschild

■ toy model for gravity
 classical, massless field
 “particle” is stellar sized object in orbit around black 

hole
■ self-consistent evolution must evolve field and 

particle simultaneously

field sourced
by particle

particle moves under
influence of field

loss of rest mass
to monopole radiation
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Accelerated motion

■ Motivation
 current mode-sum approach calculates the self-force 

on a geodesic
 one inspiral calculation requires data from a large 

number of geodesics ⇒  is calculated as a 
postprocessing step

 inefficient, since a large bank of self-force templates 
has to be computed in advance

■ Idea
 calculate the self-force self-consistently along an 

accelerated world line and use it to evolve forward in 
time

 calculation of self-force and evolution of orbit occur at 
the same time
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Detweiler-Whiting decomposition

x
x', u

Φ
■ waves travel both

 directly along the light 
cone

 by scattering off 
curvature in the tail

■ particle interacts with 
its own radiation

■ direct piece is singular and must be removed
■ tail piece is regular and solely responsible for the 

force

compute numerically known analytically

controls motion
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Singular field removal

■ Mode sum regularization
 regularizes after computing Φ
 efficient in Schwarzschild, hard to extent to Kerr
 first method to be used successfully [Barack, Mino, 

Nakano, Ori, Sasaki 2002]
■ Effective source method

 regularizes source term in wave equation
 full 3D simulation for field, extension to Kerr is simpler
 first method to compute self-consistent motion [Diener, 

Vega, Wardell, Detweiler 2011]
■ m-mode regularization

 combines aspects of effective source and mode sum 
regularization

 designed to work in Kerr [Barack, Golbourn, Sago 2007]
■ Green function methods
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Mode sum regularization

■ Spacetime is spherically symmetric 
 decompose field into spherical harmonic modes
 modes decouple
 each mode is finite at location of particle

vanishes
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Singular field near the world line

 Expand (bi-)tensors in terms of   
                           (covariant)

● Expand  in terms of               (not 
covariant)

x

x', u

x", v

x
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Changes due to acceleration

■ Covariant local expansion of the singular field
 Synge's world function σ links points on the world line 

⇒  acceleration and higher derivatives appear in its 
expansion along the world line

 Retarded and advanced times depend on σ ⇒  
acceleration appears

■ Coordinate expansion of bitensors
 Unchanged as the point x on the world line is arbitrary
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Retarded field

■ Fourth-order accurate
algorithm

■ No boundary conditions
are enforced,instead the
grid matches the domain
of dependence in each timestep

■ No physical initial data is specified, we wait until 
the initial radiation contents has propagated away

■ Both the field and the source term are evolved 
concurrently using a predictor-corrector scheme
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Changes to handle acceleration

■ field evolved using the original fourth-order 
accurate algorithm of [Lousto 2009]

 time update requires only two time slices
 straightforward to adapt to accelerated motion
 fast

■ particle evolved in step with field using an Adams-
Bashforth-Moulton multistep timestepper

 only uses time steps for which field values are 
available

 4th order accurate in time
■ extraction of field value at particle location uses 

partial information on jumps. Only jumps 
independent of acceleration are used
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Code convergence
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Mode falloff for geodesic orbits
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Trajectories

■ zoom whirl orbit
 copious radiation 

emitted during whirl 
phase

 penetrates deep within 
the strong field region

■ self force computed 
locally

■ increased perihelion 
advance due to self 
force

■ sudden transition from 
inspiral to plunge

zoom-whirl
p = 7.2 e = 0.5
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■ charge controls 
number of orbits 
before plunge

■ mass loss due to 
scalar radiation

■ E, L oscillate

Variable constants of motion

q = 10-2 q = 10-2
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Summary

■ self-consistent evolution of charge under the 
influence seems possible but there are still bugs in 
the code

■ self-force likely increases perihelion advance
■ onset of plunge once

 angular momentum is sufficiently low
 particle on inbound trajectory


